Vacancy complexes in carbon and boron nitride nanotubes.

نویسندگان

  • M G Mashapa
  • N Chetty
  • S Sinha Ray
چکیده

The effect of divacancies on the stability, structural and electronic properties of carbon and boron nitride nanotubes is studied using the ab initio density functional method. V(B)B(N) is more stable in the boron-rich and less stable in the nitrogen-rich growth conditions, and V(N)N(B) is more stable in the nitrogen-rich than in the boron-rich conditions. We find that stoichiometric defects V(B)V(N), V(B)C(N) and V(N)C(B) are stable in both the boron and nitrogen rich environments. The relaxation energy in the V(C)V(C) is lower in the armchair than in the zig-zag and the opposite trend is seen for V(C)B(C) and V(C)N(C). The divacancy is found to be particularly effective in changing the band gap of the semiconducting nanotubes due to the appearance of additional energy levels within the band gap region. For the zig-zag systems, we observe a drastic reduction of the band gap in V(B)B(N), V(N)N(B) and V(N)C(B) and a complete removal of the band gap in V(B)V(N) and V(B)C(N), negating the semiconducting behaviour of the nanotube.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab initio studies of vacancies in (8,0) and (8,8) Single-walled carbon and boron nitride nanotubes.

A systematic study of vacancies in single-walled carbon nanotubes and boron nitride nanotubes was carried out. First principles calculations within the framework of density functional theory using the CASTEP code are used to optimize fully the geometries of the systems. The generalized gradient approximation is used for the exchange-correlation functional. We find that the pristine single-walle...

متن کامل

Defect complexes in carbon and boron nitride nanotubes.

The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented in the Castep code. We found more substantial atomic relaxations in the zig-zag carbon nanotube than the armchair one. We find that the B(C)B(c) defect introdu...

متن کامل

Doping finite-length carbon and boron nitride nanotubes with aluminium atom: A thermodynamic semiempirical investigation

The doping reaction of truncated boron nitride and carbon nanotubes with aluminium atom wastheoretically investigated. The AM1, PM3, and PM6 semiempirical methods have been used toevaluate the thermochemistry of doping reactions of single walled boron nitride nanotubes andcarbon nanotubes. The enthalpy changes, Gibbs free energy changes, and entropy changes of studieddoping reactions were evalu...

متن کامل

Evolution of Irradiation-Induced Vacancy Defects in Boron Nitride Nanotubes.

Irradiation-induced vacancy defects in multiwalled (MW) boron nitride nanotubes (BNNTs) are investigated via in situ high-resolution transmission electron microscope operated at 80 kV, with a homogeneous distribution of electron beam intensity. During the irradiation triangle-shaped vacancy defects are gradually generated in MW BNNTs under a mediate electron current density (30 A cm(-2)), by kn...

متن کامل

First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene.

We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 2012